#upper anterior measurement Linear model
linearAnterior <- lm(PADataNoOutlier$Lipid~PADataNoOutlier$PSUA)
summary(linearAnterior)
linearAnterior
with(PADataNoOutlier, plot(Lipid~PSUA,las = 1,col = ifelse(PADataNoOutlier$`Fork Length`< 280,"red","black")))
abline(linearAnterior)
plot(linearAnterior)
#Exponential function
expAnterior <- lm(PADataNoOutlier$Lipid~log(PADataNoOutlier$PSUA))
summary (expAnterior)
expAnterior
with(PADataNoOutlier, plot(Lipid~log(PSUA), las = 1, col = ifelse(PADataNoOutlier$`Fork Length`< 260,"red","black")))
abline(expAnterior)
plot(expAnterior)
summary(expAnterior)
early <- subset(RPMA2Growth, StockYear<2006)
mid <- subset(RPMA2Growth, StockYear<2014 & StockYear>2003)
RPMA2GrowthSub <- transform(RPMA2Growth, Age = as.integer(Age))
Early <- subset(RPMA2GrowthSub, StockYear<2004)
Mid <- subset(RPMA2GrowthSub, StockYear<2018 & StockYear>2005)
EarlyWeightAge <- ddply(Early, ~Age, summarise, meanWE=mean(Weight, na.rm = T))
EarlyLengthAge <- ddply(Early, ~Age, summarise, meanLE=mean(ForkLength, na.rm = T))
MidLengthAge <- ddply(Mid, ~Age, summarise, meanLM=mean(ForkLength, na.rm = T))
WeightChange <- rep(NA, 9)
library(plyr)
WeightAge <- ddply(RPMA2GrowthSub, ~Age, summarise, meanW=mean(Weight, na.rm = T))
LengthAge <- ddply(RPMA2GrowthSub, ~Age, summarise, meanL=mean(ForkLength, na.rm = T))
plot(EarlyLengthAge$meanLE~EarlyLengthAge$Age,las = 1,ylab = "Fork Length (mm)",xlab = "Age")
lines(EarlyLengthAge$meanLE~EarlyLengthAge$Age)
points(MidLengthAge$meanLM~MidLengthAge$Age,col = "red")
lines(MidLengthAge$meanLM~MidLengthAge$Age,col = "red")
legend(15, 600, legend = c("1998-2003", "2006-2017"),col = c("black", "red"), lty = 1:1,cex = 0.8)
#Tanner's code/help
WeightChange <- rep(NA, 9)
library(plyr)
WeightAge <- ddply(RPMA2GrowthSub, ~Age, summarise, meanW=mean(Weight, na.rm = T))
LengthAge <- ddply(RPMA2GrowthSub, ~Age, summarise, meanL=mean(ForkLength, na.rm = T))
plot(WeightAge$meanW~WeightAge$Age)
plot(LengthAge$mean~LengthAge$Age)
WeightChange
Weight1 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==1], na.rm=TRUE)
Weight1
Length1 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==1], na.rm=TRUE)
Weight2 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==2], na.rm=TRUE)
Length2 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==2], na.rm=TRUE)
Weight3 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==3], na.rm=TRUE)
Length3 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==3], na.rm=TRUE)
Weight4 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==4], na.rm=TRUE)
Length4 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==4], na.rm=TRUE)
Weight5 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==5], na.rm=TRUE)
Length5 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==5], na.rm=TRUE)
Weight6 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==6], na.rm=TRUE)
Length6 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==6], na.rm=TRUE)
Weight7 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==7], na.rm=TRUE)
Length7 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==7], na.rm=TRUE)
Weight8 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==8], na.rm=TRUE)
Length8 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==8], na.rm=TRUE)
Weight9 <- mean(RPMA2GrowthSub$Weight[RPMA2GrowthSub$Age==9], na.rm=TRUE)
Length9 <- mean(RPMA2GrowthSub$ForkLength[RPMA2GrowthSub$Age==9], na.rm=TRUE)
x <- data.frame("Age" = 1:9, "Growth" = Weight1,Weight2,Weight3,Weight4,Weight5,Weight6,Weight7,Weight8,Weight9)